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Abstract—This article discusses the subject parallel 

programming, are presented theoretical and practical concepts 

on the subject. This paper provides a description of the 

implementation and testing of a solution using parallelism with 

threads. Further describes the results obtained in the 

implementation and testing of a parallel solution using CUDA. 

These performance tests was realized for comparison using the 

best known algorithm for the linear problem and parallel 

solution. The problem approach in this article referred to a 

multiplication of square matrix utilizing both solution mentioned 

below. 

Index Terms—Parallel programming, threads, CUDA, tests. 

I. INTRODUCTION 

There is a continual demand for greater computational 

speed for computer system problems. Such problems often 

need huge repetitive calculation on large amounts of data to 

give valid results. Computations must to be completed within 

an acceptable time period. There are some problems that have a 

specific deadline for the computations as weather 

forecasting, petroleum or gas prospection. 

These areas are grand challenge for today’s computers, 

large execution time is always contradictory face the massive 

power of computation available. One way of increasing 

computational speed is by using multiple processor operating 

together on a single problem. The overall problem is split into 

parts, each of which is performed by a separate processor in 

parallel. Writing programs for this form of computation is 

known as parallel programing. The computing environment for 

parallel programing could be a specially designed computer 

system containing multiple processor or several independent 

computers connected. The idea is that n computers could 

provide up to n times the computational speed of a single 

computer. Obviously this is hypothetical situation that rarely 

achieved in practice. Problems commonly cannot be divided in 

parts, transfer to another computers, processed, gathered and 

synchronized without lose time in data transfer and 

communications.  

A parallel computer is not a new idea, for example [1] 

writes about a computer capable of executing an arbitrary 

numbers of sub-programs simultaneously in 1959.  

Parallel programming requires suitable computing 

platforms, which we can describe as either a single computer 

with multiple internal processors or multiple interconnected 

computers. A conventional computer consists of a processor 

executing a program stored in a main memory [4]. A natural 

way to extend the single processor model is creating a cluster 

or grid who will processor connected to multiple memory 

modules, such that each processor can access any memory 

module in a so-called shared memory configuration. The 

connection between the processors and memory is through 

some form of interconnection network. 

In a single processor computer, a single stream of 

instructions is generated from the program. In 1996 [2] created 

a classification for computers and called this a single 

instruction stream-single data stream (SISD) computer. For 

example von-Neumann traditional machines. For a common 

function multiprocessor system, each processor has a separate 

program and one instruction stream is generated from each 

program for each processor. Clasified by [2] as a type of 

computer multiple instruction stream-multiple data stream 

(MIMD) computer. 

No matter what class of computer you use, to achieve an 

improvement in speed through the use of parallelism, it is 

necessary to divide the computation into tasks or processes that 

can be executed simultaneously. The size of a processes can be 

described by its granularity. In coarse granularity, each process 

contains sequential instructions in large number and takes a 

considerable time to execute. In fine granularity, a process 

consist of a few instructions or even one instruction. 

Sometimes granularity is described as the size of the 

computation between communication and synchronization 

points. Generally, we want to increase the granularity to reduce 

the cost of process creation and interprocess communication.  

It is particularly desirable in message passing where reduce 

communication overhead is crucial, because of the significant 

time taken by inter computer connection. The coast of the 

operations needs to be objective to make it less expensive in 

time of computation. Granularity is related in [4] with the 

number of processors being used. The ratio 

Granularity = Computation time = tcomp                          (1) 

                    Communication time  tcomm 

can be used as a metric and maximize the granularity while 

maintaining sufficient parallelism.  



     A measure of relative performance between a 

multiprocessor system and a single processor system is the 

speedup factor, defined in [4] as  

              S(n) = Execution time using one processor = ts        (2) 

                        Execution time using multiprocessor    tp 

where ts is the execution time on a single processor and tp is the 

execution time on a multiprocessor. S(n) gives the increase in 

speed in using a multiprocessor . For comparing a parallel 

solution with a sequential solution we will use a fastest 

sequential algorithm for running on a single processor.  

     It is reasonable that some parts of computation cannot be 

divided at all into concurrent processes. The Amdahl’s 

argument [3] claim that the performance gain that can be 

obtained by improving a particular part of the system is limited 

by the fraction of time that the part is used by the system 

during operation. In other words, periods when not all 

processor can be performing useful work, extra computations 

in parallel version not seen in the sequential version and the 

communication time for sending messages, has a potential to 

improve the overhead of a parallel version and limit the 

speedup. 

II. THREADS, PROCESSES AND MULTITHREADING 

In concurrent programming, there are two basic units of 

execution: processes and threads. Here we are mostly 

concerned with threads. A computer system normally has many 

processes and threads, even in systems that only have a single 

execution core. Processing time for a single core is shared 

among processes and threads through an operational system 

feature called time slicing.  

Threads and processes provide an execution environment 

although creating a new thread require fewer resources than 

creating a new process. Threads differ from traditional 

multitasking operating system process. Threads can exist 

within a process, every process has at least one. These share 

the process’s resources, including memory and open files. This 

makes more efficient, but potentially more problematic for 

communication. Processes are typically independent, while 

threads are subsets of a process and don’t have separate address 

spaces. 

Another approach in parallel programming is 

multithreading. This is mainly found in multitasking operating 

systems. Multithreading is a widespread programming and 

execution model that allows multiple threads to exist within the 

context of a single process. These threads share the process's 

resources, but are able to execute independently.  

To the programmer’s point of view, there are advantages 

and disadvantages in dividing an application into multiple 

threads. On the one hand it facilitates the development, it is 

possible to develop the program into modules, testing them in 

isolation, rather than writing a single block of code. On the 

other hand, multithreaded work becomes more complicated 

due to the interaction between them. 

III. GPU COMPUTING 

To understand the architecture behind the graphics 

processing units (GPU) is necessary to look for the CPU 

architecture and compare both. CPUs are designed to get 

maximum performance from a stream of instructions, which 

operates on diverse data, such as integers and floating-point 

calculations, and performs random memory accesses, 

branching, etc. Architects worked to extract more parallelism 

of instructions and launch as many instructions as possible in 

parallel in CPUs. The problem is that there is a limit to the 

parallelism that is possible to get out of a sequential stream of 

instructions and consequently, increasing the number of 

calculating units is useless, since they remain unused most of 

the time.  

Differently, the operation of a GPU is elegantly simple. The 

job consists of taking a group of polygons, on the one hand, 

and generating a group of pixels on the other. The polygons 

and pixels are independent of each other, and so can be 

processed by parallel units. That means that a GPU can stay 

free to devote a large part of its die to calculating units which, 

unlike those of a CPU, will actually be used. 

We used the CPU, or several CPUs) for office and Internet 

applications and GPUs were good only for drawing pretty 

pictures faster. But an event change all that, the appearance of 

programmability in GPUs. The idea of using graphics 

accelerators for mathematical calculation is not recent. The 

first traces of it go back to the 1990s. Initially it was very 

primitive and limited. In 2003 a new stage was reached but the 

only way to get access to the GPUs resources was to use one of 

the two APIs existing: Direct3D or OpenGL. Consequently, 

researches who wanted to harness the GPU’s processing power 

had to work with these APIs. The problem was that those 

individuals weren’t necessarily experts in graphics 

programming, which seriously complicated access to the 

technology. This difference between two areas of technology 

leveraged the development of solution that simplify the use of 

the resources of computation on GPUs. 

One of the first efforts was a set of extensions to the C 

language presented by Stanford University called BrookGPU. 

Concretely, Brook proposed to encapsulate all the management 

part of the 3D API and expose the GPU as a coprocessor for 

parallel calculations. The project Brook had merits to be the 

first to bring General Purpose Graphic Processing Units 

(GPGPU) to the public knowledge. 

The Compute Unified Device Architecture or CUDA is a 

parallel computing platform and programming model created 

by NVIDIA that enables dramatic increases in computing 

performance by harnessing the power of the graphics 

processing unit (GPU).  

CUDA has been widely deployed, since its introduction in 

2006, through thousands of applications and published research 

papers. Applications used in astronomy, biology, chemistry, 

physics, data mining, manufacturing, finance, and other 

computationally intense fields are increasing using CUDA to 

deliver the benefits of GPU acceleration. 

The company has chosen to use a rather special 

terminology that can be hard to grasp. First we need to 



understand what a thread is in CUDA, because the term doesn’t 

have quite the same meaning as a CPU thread. A thread on the 

GPU is a basic element of the data to be processed. Unlike 

CPU threads, CUDA threads are extremely “lightweight,” 

meaning that a context change between two threads is not a 

costly operation. 

Another term frequently encountered in the CUDA 

documentation is warp. A warp in CUDA, then, is a group of 

32 threads, which is the minimum size of the data processed in 

SIMD fashion by a CUDA multiprocessor. This granularity 

frequently is hard to be used by programmers, so in CUDA, 

instead of manipulating warps directly, you work with blocks 

that can contain 64 to 512 threads. 

These blocks are put together in grids. The advantage of the 

grouping is the number of blocks processed simultaneously by 

the GPU are closely linked to hardware resources. The number 

of blocks in a grid make it possible to totally abstract that 

constraint and apply a kernel to a large quantity of threads in a 

single call, without worrying about fixed resources. 

Finally other terms frequently used in the CUDA API are 

host and device. The first designates the CPU and the 

following refer to the GPU. 

IV. RESULTS ACHIEVE EXPLORING THREADS 

During this research we analyzed a series of data obtained 

using threads on machines type t2.micro and g2.2xlarge 

virtualized available in aws.amazon.com. In order to exploit the 

resources of concurrent computing tasks, we developed this 

study based on the measurement of code runtime executed in a 

controlled environment. Compared to the execution of a 

sequential matrix multiplication algorithm with the same 

resources and with different resources.   

Data was obtained from a computational load generated by 

using square matrices algorithm which requires sequential time 

complexity of O(n²). The way used to implement the matrix 

multiplication algorithm was allocate one thread to compute 

each line and column of the matrix. The following data 

describes the relationship between the size of the arrays and the 

runtime using threads, Table I.  

TABLE I.  TABLE THREADS SYSTEM. 

 Table Column CPU 

N = 100 0,129989 N = 600 5,421470 

N = 200 0,531282 N = 700 8,319280 

N = 300 1,186866 N = 800 11,467733 

N = 400 2,254106 N = 900 15,007080 

N = 500 3,529937 N = 1000 20,192607 

 

The results gather here shows relation between time of 

execution and size of the matrices and it is described in Fig. 1. 

The diagram shows a linear behavior related with a increase in 

the size of the array.  

 

 

 

 
Fig. 1.  Graph shows time versus number of rows and columns. 

TABLE II.  TIME WITH LARGE RESOURCES 

 Table Column CPU 

N = 100 0,330897 N = 600 12,495379 

N = 200 1,255050 N = 700 18,400707 

N = 300 3,065345 N = 800 25,384760 

N = 400 5,392766 N = 900 33,604839 

N = 500 9,062683 N = 1000 40,860793 

 

However the results collected in g2.2xlarge machine whith 

eight cores running the same algorithm reveal a relevant 

increase of time execution. This behavior might describe a 

overhead promoted by the bottleneck in comunication 

resources or even a bad use of them. The diagram in Fig. 2 

show the growth of time running the matrix multiplication 

with increase of data. 

 

 

Fig. 2.  Compare between machines 

 

V. RESULTS ACHIEVE EXPLORING GPU 

There are several kinds of memory on a CUDA device, 

each with different scope, lifetime, and caching behavior, know 

how is the best solution is the goal [5]. In order to compare the 

runtime computation exploring different approaches related to 

parallel programming we adopted solutions have been 



implemented running on device with global variables and the 

use of shared memory. These results were compared to results 

obtained from running the same work load multiplication 

square matrix size “n” on the host. In the survey we found 

results supporting the use of GPU through CUDA 

implementation reducing the computation time compared to 

host. 

For such tests g2.2xlarge virtualized machine were used, 

this machine has high performance NVidia GPUs, each with 

1536 CUDA cores and 4 GB of video memory, Intel Xeon E5-

2670 processors (Sandy Bridge) high frequency and 15GB 

RAM. The operating system used was the Ubuntu and CUDA 

interface available through AMI, release 7.0, V7.0.27. 

The results were collected in three stages and depict the 

growth in relation of time of computation and amount of data. 

The next table show time of processing executed on CPU, time 

increases consistently with respect to increasing the size of 

calculation into matrices.    

TABLE III.  TIME COMPUTING HOST 

 Time CPU 

N = 100 0,0061380 N = 800 70,7780400 

N = 200 0,0594650 N = 900 103,9549600 

N = 300 0,2075470 N = 1000 112,5256900 

N = 400 0,5935220 N = 2000 126,9203600 

N = 500 1,5190770 N = 3000 593,9959930 

N = 600 14,1679700 N = 4000 1302,3463500 

N = 700 46,7894000   

a.  Times obtained using CPU 

We notice a performance gain when performing matrix 

multiplication using overlap computation of GPU devices. We 

can see the result obtained using global memory in Table IV.  
 

TABLE IV.  TIME COMPUTING DEVICE GLOBAL 

N Time GPU 

N = 100 0,000212 N = 6000 10,884820 

N = 1000 0,058246 N = 7000 17,307934 

N = 2000 0,415002 N = 8000 25,826821 

N = 3000 1,370736 N = 9000 36,817905 

N = 4000 3,228621 N = 10000 50,386388 

N = 5000 6,290777   

a. Times obtained using global variable  

The results obtained using coalesced global memory were 

virtually the same, not reducing the execution time for the 

same amount of rows and columns. But with a substantial gain 

compared with the execution on CPU, Table V shows the 

times obtained using coalesced global memory.  

 

 

TABLE V.  DEVICE GLOBAL COALESCED MEMORY 

N GPU Global (coalesced) 

n=100 0,000221 n=6000 10,8994430 

n=1000 0,056394 n=7000 17,2983500 

n=2000 0,412831 n=8000 25,8280860 

n=3000 1.366.812 n=9000 36,7643020 

n=4000 3,2378500 n=10000 50,4193770 

n=5000 6,3030230   

 

The Table VI show the results collected utilizing shared 

memory for square matrix multiplication on device. We do not 

observe performance gains and increased speedup with the use 

of coalesced global memory this work 

TABLE VI.  TIME COMPUTING ON DEVICE WITH SHARED MEMORY 

 GPU Shared Memory 

N = 100 0,000182 N = 6000 6,437063 

N = 1000 0,030215 N = 7000 9,747571 

N = 2000 0,242912 N = 8000 15,220369 

N = 3000 0,787267 N = 9000 20,640033 

N = 4000 1,923507 N = 10000 29,695140 

N = 5000 3,575261     
 

The best results are acquired running CUDA with shared 

memory. We compared the time found with each category 

about GPU programming described in this article.  Fig. 3 

demonstrate results found among them all. Comparisons were 

made between the algorithms developed in CUDA and their 

sequential version. The implementation of matrix 

multiplication, the CUDA model had great time advantage 

reaching speedup of more than 700x. 
 

 
 

 
 

Fig. 3.  Comparison of speedup with increase in data. 
 

 

 



VI. CONCLUSION 

The continuous increasing in parallel resources and GPU 

computation devices, allow possibilities not envisioned before. 

This amount of resources facilitates the research of parallel 

architecture. Though not so simple to develop the knowledge 

need to implement a real parallel solution there are large 

documentation about the matter accessible. Shared memory is a 

powerful feature for writing well optimized CUDA code. 

Access to shared memory is much faster than global memory 

access because it is located on chip. 

In this article we discusses some aspects related of how to 

efficiently access memory with CUDA. In the survey we found 

results supporting the use of GPU through CUDA 

implementation reducing the computation time of a specific 

case conducting matrix multiplication. On the other hand the 

results collected using threads show up conflicting deserving 

more analysis in future works. 

Notwithstanding research has shown to be relevant 

gathered data involving memory access in Compute Unified 

Device Architecture. We about the use of memory in different 

features and a way to use shared memory that enable global 

memory coalescing, as demonstrated in this paper. 
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