
Exploring Parallel Programming
Threads and CUDA Applied to Matrix Multiplication

Euclides Palma Paim

Applied Computing Graduate Program (PIPCA)

University of Vale do Rio dos Sinos (UNISINOS)
São Leopoldo, Brazil

euclidespaim@gmail.com

Abstract—This article discusses the subject parallel

programming, are presented theoretical and practical concepts

on the subject. This paper provides a description of the

implementation and testing of a solution using parallelism with

threads. Further describes the results obtained in the

implementation and testing of a parallel solution using CUDA.

These performance tests was realized for comparison using the

best known algorithm for the linear problem and parallel

solution. The problem approach in this article referred to a

multiplication of square matrix utilizing both solution mentioned

below.

Index Terms—Parallel programming, threads, CUDA, tests.

I. INTRODUCTION

There is a continual demand for greater computational

speed for computer system problems. Such problems often

need huge repetitive calculation on large amounts of data to

give valid results. Computations must to be completed within

an acceptable time period. There are some problems that have a

specific deadline for the computations as weather

forecasting, petroleum or gas prospection.

These areas are grand challenge for today’s computers,

large execution time is always contradictory face the massive

power of computation available. One way of increasing

computational speed is by using multiple processor operating

together on a single problem. The overall problem is split into

parts, each of which is performed by a separate processor in

parallel. Writing programs for this form of computation is

known as parallel programing. The computing environment for

parallel programing could be a specially designed computer

system containing multiple processor or several independent

computers connected. The idea is that n computers could

provide up to n times the computational speed of a single

computer. Obviously this is hypothetical situation that rarely

achieved in practice. Problems commonly cannot be divided in

parts, transfer to another computers, processed, gathered and

synchronized without lose time in data transfer and

communications.

A parallel computer is not a new idea, for example [1]

writes about a computer capable of executing an arbitrary

numbers of sub-programs simultaneously in 1959.

Parallel programming requires suitable computing

platforms, which we can describe as either a single computer

with multiple internal processors or multiple interconnected

computers. A conventional computer consists of a processor

executing a program stored in a main memory [4]. A natural

way to extend the single processor model is creating a cluster

or grid who will processor connected to multiple memory

modules, such that each processor can access any memory

module in a so-called shared memory configuration. The

connection between the processors and memory is through

some form of interconnection network.

In a single processor computer, a single stream of

instructions is generated from the program. In 1996 [2] created

a classification for computers and called this a single

instruction stream-single data stream (SISD) computer. For

example von-Neumann traditional machines. For a common

function multiprocessor system, each processor has a separate

program and one instruction stream is generated from each

program for each processor. Clasified by [2] as a type of

computer multiple instruction stream-multiple data stream

(MIMD) computer.

No matter what class of computer you use, to achieve an

improvement in speed through the use of parallelism, it is

necessary to divide the computation into tasks or processes that

can be executed simultaneously. The size of a processes can be

described by its granularity. In coarse granularity, each process

contains sequential instructions in large number and takes a

considerable time to execute. In fine granularity, a process

consist of a few instructions or even one instruction.

Sometimes granularity is described as the size of the

computation between communication and synchronization

points. Generally, we want to increase the granularity to reduce

the cost of process creation and interprocess communication.

It is particularly desirable in message passing where reduce

communication overhead is crucial, because of the significant

time taken by inter computer connection. The coast of the

operations needs to be objective to make it less expensive in

time of computation. Granularity is related in [4] with the

number of processors being used. The ratio

Granularity = Computation time = tcomp (1)

 Communication time tcomm

can be used as a metric and maximize the granularity while

maintaining sufficient parallelism.

 A measure of relative performance between a

multiprocessor system and a single processor system is the

speedup factor, defined in [4] as

 S(n) = Execution time using one processor = ts (2)

 Execution time using multiprocessor tp

where ts is the execution time on a single processor and tp is the

execution time on a multiprocessor. S(n) gives the increase in

speed in using a multiprocessor . For comparing a parallel

solution with a sequential solution we will use a fastest

sequential algorithm for running on a single processor.

 It is reasonable that some parts of computation cannot be

divided at all into concurrent processes. The Amdahl’s

argument [3] claim that the performance gain that can be

obtained by improving a particular part of the system is limited

by the fraction of time that the part is used by the system

during operation. In other words, periods when not all

processor can be performing useful work, extra computations

in parallel version not seen in the sequential version and the

communication time for sending messages, has a potential to

improve the overhead of a parallel version and limit the

speedup.

II. THREADS, PROCESSES AND MULTITHREADING

In concurrent programming, there are two basic units of

execution: processes and threads. Here we are mostly

concerned with threads. A computer system normally has many

processes and threads, even in systems that only have a single

execution core. Processing time for a single core is shared

among processes and threads through an operational system

feature called time slicing.

Threads and processes provide an execution environment

although creating a new thread require fewer resources than

creating a new process. Threads differ from traditional

multitasking operating system process. Threads can exist

within a process, every process has at least one. These share

the process’s resources, including memory and open files. This

makes more efficient, but potentially more problematic for

communication. Processes are typically independent, while

threads are subsets of a process and don’t have separate address

spaces.

Another approach in parallel programming is

multithreading. This is mainly found in multitasking operating

systems. Multithreading is a widespread programming and

execution model that allows multiple threads to exist within the

context of a single process. These threads share the process's

resources, but are able to execute independently.

To the programmer’s point of view, there are advantages

and disadvantages in dividing an application into multiple

threads. On the one hand it facilitates the development, it is

possible to develop the program into modules, testing them in

isolation, rather than writing a single block of code. On the

other hand, multithreaded work becomes more complicated

due to the interaction between them.

III. GPU COMPUTING

To understand the architecture behind the graphics

processing units (GPU) is necessary to look for the CPU

architecture and compare both. CPUs are designed to get

maximum performance from a stream of instructions, which

operates on diverse data, such as integers and floating-point

calculations, and performs random memory accesses,

branching, etc. Architects worked to extract more parallelism

of instructions and launch as many instructions as possible in

parallel in CPUs. The problem is that there is a limit to the

parallelism that is possible to get out of a sequential stream of

instructions and consequently, increasing the number of

calculating units is useless, since they remain unused most of

the time.

Differently, the operation of a GPU is elegantly simple. The

job consists of taking a group of polygons, on the one hand,

and generating a group of pixels on the other. The polygons

and pixels are independent of each other, and so can be

processed by parallel units. That means that a GPU can stay

free to devote a large part of its die to calculating units which,

unlike those of a CPU, will actually be used.

We used the CPU, or several CPUs) for office and Internet

applications and GPUs were good only for drawing pretty

pictures faster. But an event change all that, the appearance of

programmability in GPUs. The idea of using graphics

accelerators for mathematical calculation is not recent. The

first traces of it go back to the 1990s. Initially it was very

primitive and limited. In 2003 a new stage was reached but the

only way to get access to the GPUs resources was to use one of

the two APIs existing: Direct3D or OpenGL. Consequently,

researches who wanted to harness the GPU’s processing power

had to work with these APIs. The problem was that those

individuals weren’t necessarily experts in graphics

programming, which seriously complicated access to the

technology. This difference between two areas of technology

leveraged the development of solution that simplify the use of

the resources of computation on GPUs.

One of the first efforts was a set of extensions to the C

language presented by Stanford University called BrookGPU.

Concretely, Brook proposed to encapsulate all the management

part of the 3D API and expose the GPU as a coprocessor for

parallel calculations. The project Brook had merits to be the

first to bring General Purpose Graphic Processing Units

(GPGPU) to the public knowledge.

The Compute Unified Device Architecture or CUDA is a

parallel computing platform and programming model created

by NVIDIA that enables dramatic increases in computing

performance by harnessing the power of the graphics

processing unit (GPU).

CUDA has been widely deployed, since its introduction in

2006, through thousands of applications and published research

papers. Applications used in astronomy, biology, chemistry,

physics, data mining, manufacturing, finance, and other

computationally intense fields are increasing using CUDA to

deliver the benefits of GPU acceleration.

The company has chosen to use a rather special

terminology that can be hard to grasp. First we need to

understand what a thread is in CUDA, because the term doesn’t

have quite the same meaning as a CPU thread. A thread on the

GPU is a basic element of the data to be processed. Unlike

CPU threads, CUDA threads are extremely “lightweight,”

meaning that a context change between two threads is not a

costly operation.

Another term frequently encountered in the CUDA

documentation is warp. A warp in CUDA, then, is a group of

32 threads, which is the minimum size of the data processed in

SIMD fashion by a CUDA multiprocessor. This granularity

frequently is hard to be used by programmers, so in CUDA,

instead of manipulating warps directly, you work with blocks

that can contain 64 to 512 threads.

These blocks are put together in grids. The advantage of the

grouping is the number of blocks processed simultaneously by

the GPU are closely linked to hardware resources. The number

of blocks in a grid make it possible to totally abstract that

constraint and apply a kernel to a large quantity of threads in a

single call, without worrying about fixed resources.

Finally other terms frequently used in the CUDA API are

host and device. The first designates the CPU and the

following refer to the GPU.

IV. RESULTS ACHIEVE EXPLORING THREADS

During this research we analyzed a series of data obtained

using threads on machines type t2.micro and g2.2xlarge

virtualized available in aws.amazon.com. In order to exploit the

resources of concurrent computing tasks, we developed this

study based on the measurement of code runtime executed in a

controlled environment. Compared to the execution of a

sequential matrix multiplication algorithm with the same

resources and with different resources.

Data was obtained from a computational load generated by

using square matrices algorithm which requires sequential time

complexity of O(n²). The way used to implement the matrix

multiplication algorithm was allocate one thread to compute

each line and column of the matrix. The following data

describes the relationship between the size of the arrays and the

runtime using threads, Table I.

TABLE I. TABLE THREADS SYSTEM.

 Table Column CPU

N = 100 0,129989 N = 600 5,421470

N = 200 0,531282 N = 700 8,319280

N = 300 1,186866 N = 800 11,467733

N = 400 2,254106 N = 900 15,007080

N = 500 3,529937 N = 1000 20,192607

The results gather here shows relation between time of

execution and size of the matrices and it is described in Fig. 1.

The diagram shows a linear behavior related with a increase in

the size of the array.

Fig. 1. Graph shows time versus number of rows and columns.

TABLE II. TIME WITH LARGE RESOURCES

 Table Column CPU

N = 100 0,330897 N = 600 12,495379

N = 200 1,255050 N = 700 18,400707

N = 300 3,065345 N = 800 25,384760

N = 400 5,392766 N = 900 33,604839

N = 500 9,062683 N = 1000 40,860793

However the results collected in g2.2xlarge machine whith

eight cores running the same algorithm reveal a relevant

increase of time execution. This behavior might describe a

overhead promoted by the bottleneck in comunication

resources or even a bad use of them. The diagram in Fig. 2

show the growth of time running the matrix multiplication

with increase of data.

Fig. 2. Compare between machines

V. RESULTS ACHIEVE EXPLORING GPU

There are several kinds of memory on a CUDA device,

each with different scope, lifetime, and caching behavior, know

how is the best solution is the goal [5]. In order to compare the

runtime computation exploring different approaches related to

parallel programming we adopted solutions have been

implemented running on device with global variables and the

use of shared memory. These results were compared to results

obtained from running the same work load multiplication

square matrix size “n” on the host. In the survey we found

results supporting the use of GPU through CUDA

implementation reducing the computation time compared to

host.

For such tests g2.2xlarge virtualized machine were used,

this machine has high performance NVidia GPUs, each with

1536 CUDA cores and 4 GB of video memory, Intel Xeon E5-

2670 processors (Sandy Bridge) high frequency and 15GB

RAM. The operating system used was the Ubuntu and CUDA

interface available through AMI, release 7.0, V7.0.27.

The results were collected in three stages and depict the

growth in relation of time of computation and amount of data.

The next table show time of processing executed on CPU, time

increases consistently with respect to increasing the size of

calculation into matrices.

TABLE III. TIME COMPUTING HOST

 Time CPU

N = 100 0,0061380 N = 800 70,7780400

N = 200 0,0594650 N = 900 103,9549600

N = 300 0,2075470 N = 1000 112,5256900

N = 400 0,5935220 N = 2000 126,9203600

N = 500 1,5190770 N = 3000 593,9959930

N = 600 14,1679700 N = 4000 1302,3463500

N = 700 46,7894000

a. Times obtained using CPU

We notice a performance gain when performing matrix

multiplication using overlap computation of GPU devices. We

can see the result obtained using global memory in Table IV.

TABLE IV. TIME COMPUTING DEVICE GLOBAL

N Time GPU

N = 100 0,000212 N = 6000 10,884820

N = 1000 0,058246 N = 7000 17,307934

N = 2000 0,415002 N = 8000 25,826821

N = 3000 1,370736 N = 9000 36,817905

N = 4000 3,228621 N = 10000 50,386388

N = 5000 6,290777

a. Times obtained using global variable

The results obtained using coalesced global memory were

virtually the same, not reducing the execution time for the

same amount of rows and columns. But with a substantial gain

compared with the execution on CPU, Table V shows the

times obtained using coalesced global memory.

TABLE V. DEVICE GLOBAL COALESCED MEMORY

N GPU Global (coalesced)

n=100 0,000221 n=6000 10,8994430

n=1000 0,056394 n=7000 17,2983500

n=2000 0,412831 n=8000 25,8280860

n=3000 1.366.812 n=9000 36,7643020

n=4000 3,2378500 n=10000 50,4193770

n=5000 6,3030230

The Table VI show the results collected utilizing shared

memory for square matrix multiplication on device. We do not

observe performance gains and increased speedup with the use

of coalesced global memory this work

TABLE VI. TIME COMPUTING ON DEVICE WITH SHARED MEMORY

 GPU Shared Memory

N = 100 0,000182 N = 6000 6,437063

N = 1000 0,030215 N = 7000 9,747571

N = 2000 0,242912 N = 8000 15,220369

N = 3000 0,787267 N = 9000 20,640033

N = 4000 1,923507 N = 10000 29,695140

N = 5000 3,575261

The best results are acquired running CUDA with shared

memory. We compared the time found with each category

about GPU programming described in this article. Fig. 3

demonstrate results found among them all. Comparisons were

made between the algorithms developed in CUDA and their

sequential version. The implementation of matrix

multiplication, the CUDA model had great time advantage

reaching speedup of more than 700x.

Fig. 3. Comparison of speedup with increase in data.

VI. CONCLUSION

The continuous increasing in parallel resources and GPU

computation devices, allow possibilities not envisioned before.

This amount of resources facilitates the research of parallel

architecture. Though not so simple to develop the knowledge

need to implement a real parallel solution there are large

documentation about the matter accessible. Shared memory is a

powerful feature for writing well optimized CUDA code.

Access to shared memory is much faster than global memory

access because it is located on chip.

In this article we discusses some aspects related of how to

efficiently access memory with CUDA. In the survey we found

results supporting the use of GPU through CUDA

implementation reducing the computation time of a specific

case conducting matrix multiplication. On the other hand the

results collected using threads show up conflicting deserving

more analysis in future works.

Notwithstanding research has shown to be relevant

gathered data involving memory access in Compute Unified

Device Architecture. We about the use of memory in different

features and a way to use shared memory that enable global

memory coalescing, as demonstrated in this paper.

REFERENCES

[1] J. Holland, “A universal computer capable of executing an

arbitrary number of sub-programs simultaneously,” in Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-

ACM computer conference (IRE-AIEE-ACM '59 (Eastern)).

ACM, New York, NY, USA, 108-113. (1959)

[2] M. Flynn, “Some computer organizations and their

effectiveness”; Department of Computer Science, The Johns

Hopkins University, Baltimore, Md. 21218.

[3] G. M. Amdahl, "Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities" in AFIPS

Conference Proceedings (30): 483–485. (1967).

[4] B. Wilkinson and M. Allen, “Numerical Algorithms” in Parallel

Programming, 1st ed. Upper Sandle River, New Jersey, USA

vol. 1. Prentice-Hall, 1999, pp.301–310.

[5] M. Harris, “How to access Global Memory Efficiently in CUDA

C/C++ Kernels” [Online].

http://devblogs.nvidia.com/parallelforall/how-access-global-

memory-efficiently-cuda-c-kernels, Accessed on: Oct, 2015.

[6] REVISTABW. CUDA: Multiplicação de Matrizes, Revista

Brasileira de Web, 2014. [Online]. Available:

http://www.revistabw.com.br/revistabw/cuda-multiplicacao-de-

matrizes/. Accessed on: Oct, 2015.

